Prof. Dr. Alfred Toth

Teilrelationen gestufter Relationen mit devianter Stelligkeit

1. Nach Bense ist die triadisch-trichtomische Zeichenrelation eine Relation über Relation, d.h. eine dreifach gestufte Relation über einer monadischen, einer dyadischen und einer triadische Teilrelation (1979, S. 53):

2. Wie zuletzt in Toth (2022) gezeigt, ist die 0-stellige Teilrelation von

$$Z^4 \supset Z^3$$

hinischtlich ihrer Position innerhalb von $Z^3 = (1 < 2 < 3)$ frei, d.h. es existiert ein Intervall $I = [Z^{4_1}, Z^{4_4}] = [(0, 1, 2, 3), (1, 2, 3, 0)]$ (d.h. $(Z^{4_4})^{-1} = (Z^{4_1})$), in aufzählender Form:

$$Z_1^0 = (0, 1, 2, 3)$$

 $Z_2^0 = (1, 0, 2, 3)$

$$Z_3^0 = (1, 2, 0, 3)$$

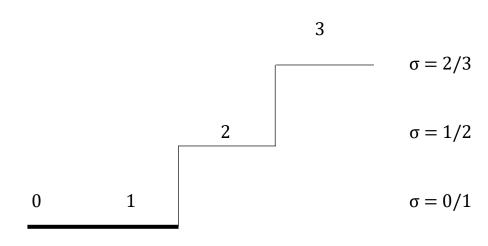
$$Z_4^0 = (1, 2, 3, 0)$$

Im folgenden wird gezeigt, daß die 4 Positionen von Z^4 innerhalb von Z^3 derart realisiert werden können, daß 0 mit einer (links- oder rechtsadjazenten) monadischen Teilrelation zu einer neuen dyadischen Teilrelation kombiniert werden. Dabei ergeben sich in allen3 möglichen Fällen jeweils 2 Varianten der valenztheoretischen Adaptation der Teilrelationen der gestuften Relationen; eine Adaptation, welche auch die Stelligkeit der rechtsadjazenten Relationen verändert. Das bedeutet also, daß für jede Teilrelation (R^x , R^y) $^m \subset (R^0 \dots (R^x, R^y)^m, R^{n+1})$ mit $x \neq y$ gilt: m = x oder m = y.

$$2.1. Z^{4}_{1}$$

$$Z^{4}_{11} = ((0^{0}, 1^{1})^{0}, 2^{1}, 3^{2})$$

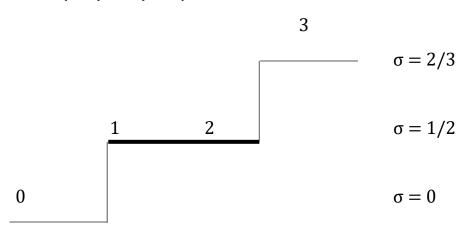
$$Z^{4}_{12} = ((0^{0}, 1^{1})^{1}, 2^{2}, 3^{3})$$



$2.2. Z^{4}_{2}$

$$Z^{4}_{2} = (0^{0}, (1^{1}, 2^{2})^{1}, 3^{2})$$

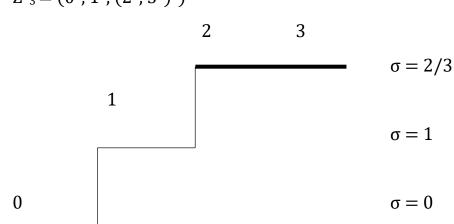
$$Z^{4}_{2} = (0^{0}, (1^{1}, 2^{2})^{2}, 3^{3})$$



2.3. Z^{4}_{3}

$$Z^{4}_{3} = (0^{0}, 1^{1}, (2^{2}, 3^{3})^{2})$$

$$Z^{4}_{3} = (0^{0}, 1^{1}, (2^{2}, 3^{3})^{3})$$



Die verhältnisse mit den Stufungsvarianten σ_α und σ_β können wie folgt zusammengefaßt werden:

	σ_{lpha}	σ_{β}
\mathbb{Z}^4 1	(0, 1, 2)	(1.2,3)
\mathbb{Z}^{4}_{2}	(0, 1, 2)	(0, 2, 3)
\mathbb{Z}^{4}_{3}	(0, 1, 2)	(0, 1, 3).

Literatur

Bense, Max, Die Unwahrscheinlichkeit des Ästhetischen. Baden-Baden 1979

Toth, Alfred, Possessiv-copossessive Primzahlrelationen. In: Electronic Journal for Mathematical Semioltics, 2022

13.9.2022